### The sampling theorem or Nyquist-Shannon theorem

This post deals with one of the fundamental theorem of signal processing: the sampling theorem or Nyquist-Shannon theorem (have a look on wikipedia). What is the right sampling to transform an analog signal to a digital one? First of all the news: I decided that having a friend when I try to write about signal processing is useful. So I gave a name to my friend**Wavy**:)…but I had a look on google for ‘wavy’ and I found many beautiful images of wavy hair..for this reason, now, Wavy became

#### Questions

- What happen if we use longer nsample?
- What happen if we use smaller sampling frequency?

##### First of all, let’s enunciate the sampling theorem:

“*If a continuous signal* is band-limited, that is its Fourier spectrum is null above a given frequency , and if the sampling rate is higher than 2 times the maximum frequency of the signal, than the continuous signal can be perfectly recovered by the discrete signal

*if*

“

- What happen if we use smaller sampling frequency?

Let’s simulate again a sinusoidal signal which has as main frequency nu=50Hz

In [1]:

```
### importing the library
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.fftpack import fft
# sample spacing
sampling=1024
nsample = 500
dt = 1.0 / sampling
x = np.linspace(0.0, nsample*dt,nsample)
nu=50.0# frequency in Hz of the sine function
y = np.sin(nu * 2.0*np.pi*x)
yf = fft(y)
xf = np.linspace(0.0, 1.0/(2.0*dt), nsample/2)
plt.plot(x, (y[0:nsample]))
plt.grid()
plt.show()
plt.plot(xf, 2.0/nsample * np.abs(yf[0:nsample/2]))
plt.grid()
plt.show()
```

We have used sampling frequency sampling=1024 Hz which is certainly $> 2*nu$.
Now let’s do the same experiment using sampling=$60$Hz, which is smaller than 2 times nu

In [2]:

```
# sample spacing
sampling=60
nsample = 500
dt = 1.0 / sampling
x = np.linspace(0.0, nsample*dt,nsample)
nu=50.0# frequency in Hz of the sine function
y = np.sin(nu * 2.0*np.pi*x)
yf = fft(y)
xf = np.linspace(0.0, 1.0/(2.0*dt), nsample/2)
plt.plot(x, (y[0:nsample]))
plt.grid()
plt.show()
plt.plot(xf, 2.0/nsample * np.abs(yf[0:nsample/2]))
plt.grid()
plt.show()
```

The signal in time domain isn’t not certainly a single sinusoidal signal at $50$Hz, but seems a beating of 2 different frequency. The main frequency is not anymore $50$Hz, but $10$ Hz…
Now let’s sample the data at $70$Hz

In [3]:

```
# sample spacing
sampling=70
nsample = 500
dt = 1.0 / sampling
x = np.linspace(0.0, nsample*dt,nsample)
nu=50.0# frequency in Hz of the sine function
y = np.sin(nu * 2.0*np.pi*x)
yf = fft(y)
#xf = np.linspace(0.0, 1.0/(2.0*dt), nsample/2)
xf = np.linspace(0.0, 1.0/(2.0*dt), nsample/2)
plt.plot(x, (y[0:nsample]))
plt.grid()
plt.show()
plt.plot(xf, 2.0/nsample * np.abs(yf[0:nsample/2]))
plt.grid()
plt.show()
```

Wow…the main frequency is $20$Hz…
But $60-50$ is 10 and $70-50$ is 20!!

In [4]:

```
# sample spacing
sampling=80
nsample = 500
dt = 1.0 / sampling
x = np.linspace(0.0, nsample*dt,nsample)
nu=50.0# frequency in Hz of the sine function
y = np.sin(nu * 2.0*np.pi*x)
yf = fft(y)
#xf = np.linspace(0.0, 1.0/(2.0*dt), nsample/2)
xf = np.linspace(0.0, 1.0/(2.0*dt), nsample/2)
plt.plot(x, (y[0:nsample]))
plt.grid()
plt.show()
plt.plot(xf, 2.0/nsample * np.abs(yf[0:nsample/2]))
plt.grid()
plt.show()
```