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Summary

1 Gravitational signal detection

2 Bayes Approach
Neyman Pearson rule

3 The Matched Filter
Signal Detection in a Gaussian noise
Signal to Noise Ratio
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Gravitational signal detection

Gravitational signal detection
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Gravitational signal detection

Defining the problem

The problem of the detection and the problem of measure
Signal analysis always provides probabilistic answers.
The presence of noise in the detector creates problems in two ways:
either simulate the presence of the signal or cover the presence of the
signal
The detection of a signal must be associated with a probability to
express the level of confidence with which we are ”certain” of the
presence of the signal.
Similarly, we must indicate a probability with which the measured
parameters are in a certain range of values.
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Gravitational signal detection

Signals and noise

Let’s consider a s(t) data sequence representing the output of the
detector, θ are the parameters of our signal

s(t) =

{
n(t) if the signal is not IN ,
n(t) + h(t,θ) if the signal is IN .

(1)
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Bayes Approach
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Bayes Approach

Bayes Approach

Let’s assume that θ is continuous.
We indicate the probability that h(t,θ) is present in s(t) with :
P (h|s) ≡ the probability that a signal h(t,θ), with θ unknown is
present in s(t) sequence of data observed.
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Bayes Approach

Notations

P (s|h) the probability to measure s assuming the signal h is present;
P (h) the apriori probability the signal h is present;
P (s) the probability the sequence of data s(t) is observed;
P (0) the apriori probability the signal is not present ;
P (s|0) the probability density to observe s(t) in absence of signal;
P [s|h(θ)] the probability density to observe s(t) assuming that
h(t,θ) with a given θ is present;
p(θ) the apriori probability the signal h(t) is characterized by θ.
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Bayes Approach

The Bayes law

We can write the probability that a signal h(t,θ), with θ unknown is
present in s(t) sequence of data observed.

P (h|s) = P (s|h)P (h)

P (s)
. (2)
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Bayes Approach Neyman Pearson rule

Bayes Approach
Neyman Pearson rule
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Bayes Approach Neyman Pearson rule

If we express P (s) in terms of the two probabilities that the h signal is
absent and that it is present, and also let’s re-express the probability that
h is present in terms of the probability that it is characterized by a
particular θ we have:

P (s) = P (s|0)P (0) + P (s|h)P (h) (3)

= P (s|0)P (0) + P (h)

∫
dNθ p(θ)P [s|h(θ)] (4)
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Bayes Approach Neyman Pearson rule

Using (2) and (3) we get:

P (h|s) = P (s|h)P (h)

P (s|0)P (0) + P (h)
∫
dNθ p(θ)P [s|h(θ)

(5)

We could write:
P (h|s) = Λ

Λ + P (0)/P (h)
, (6)

where
Λ ≡

∫
dNθΛ(θ) =

∫
dNθp(θ)

P [s|h(θ)]
P (s|0)

. (7)
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Bayes Approach Neyman Pearson rule

Neyman Pearson rule

The conditional probability that the signal h(t,θ) with unknown
parameters θ is present in the observed data, depends on the apriori
probability P (0) and P (h) and on the likelihood ratio Λ we have to
estimate. Once we get P (h|s), we have to choice a threshold to say if
the signal is present or not. We can fix a threshold considering the False
Alarm or the False Dismissal. If we do not know the apriori probabilities
P (h) and P (0), we can fix the threshold not on P (h|s), but on Λ:

IF Λ ≥ Λ∗ The signal is present ;
IF Λ < Λ∗ the signal is absent. (8)

If we fix the threshold on Λ∗ based on a given value of False Alarm we
could accept, this is Neyman-Pearson decision rule.
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The Matched Filter Signal Detection in a Gaussian noise

The Matched Filter
Signal Detection in a Gaussian noise
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The Matched Filter Signal Detection in a Gaussian noise

Signal Detection in a Gaussian noise

The conditional probability of measuring s(t) if the particular signal h(t,θ)
present is equal to the conditioned probability of measuring
s′(t) = s(t)− h(t,θ). Assuming that the h(t,θ) signal is not present in
s′(t):

P [s|h(θ)] = P [s− h(θ)|0] . (9)

Now let consider the probability to measure s(t) assuming no signal inside
P (s|0) s(t) is simple the noise n(t).
Let suppose that n(t) be a normal, zero mean, process with correlation
function C(τ) ( in Fourier domain with PSD S(ν)).
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The Matched Filter Signal Detection in a Gaussian noise

To estimate P [s|h(θ)]/P (s|0) let’s consider the continuous limit of
discreetly sampled data {si : i = 1, . . . , N}, with

si = s(ti) , (10)
ti − tj = (i− j)∆t , (11)

∆t =
T

N − 1
. (12)

The probability that a particular s is a sample of the process random n(t)
given by

P (si|0) =
exp

[
−1

2
s2i

C(0)

]
[2πC(0)]1/2

, (13)
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The Matched Filter Signal Detection in a Gaussian noise

The probability that the ordered set {si : i = 1, . . . , N} is a sampling of
n(t) is

P (s|0) =
exp

[
−1

2

∑N
j,k=1C

−1
jk sjsk

]
(2π)N det[Cij ]

1/2
, (14)

where
Cij ≡ C[(i− j)∆t] . (15)

exploiting previous relationships and the Wiener-Khintchine theorem, prove
that

e2πiνtk = lim
∆t→0

1

∆t2
1

2
S(ν)C̃−1(ν, tk) , (16)

where
C̃−1(ν, tk) ≡

∫ ∞

−∞
dtC−1(t, tk)e

2πiνt . (17)

with C̃−1 ed the Parsival theorem we can write

lim
∆t→0
T→∞

N∑
j,k=1

C−1
jk sjsk =

∫ ∞

−∞
dν

s̃(ν)s̃∗(ν)

S(ν)
(18)
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The Matched Filter Signal Detection in a Gaussian noise

We introduced the symmetric scalar internal product

< s, h >≡
∫ ∞

−∞
dν

s̃(ν)h̃∗(ν)

S(ν)
(19)

for the real function s e h.
So, we can write the likelihood

Λ(θ) = p(θ)
P [s|h(θ)]
P (s|0)

= p(θ)
P [s− h(θ)|0]

P (s|0)
(20)

= p(θ)
exp

[
−1

2 < s− h(θ), s− h(θ) >
]

exp
[
−1

2 < s, s >
]

= p(θ) exp

[
< s, h(θ) > −1

2
< h(θ), h(θ) >

]
.

At this point the study of the optimal detector depends on each individual
case by the amount of information we have on the parameters θ.
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The Matched Filter Signal to Noise Ratio

The Matched Filter
Signal to Noise Ratio
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The Matched Filter Signal to Noise Ratio

Signal to Noise Ratio

Let’s consider now the simple detection of a signal with known waveform
and parameters in a stationary gaussian background noise.
The likelihood ratio is

Λ = exp

(
< s, h > −1

2
< h, h >

)
, (21)

where only < s, h > depends on s and Λ a Monotonic growing function of
< s, h >. So, we can use < s, h > as decision rule on a threshold e s∗:

IF < s, h > ≥ s∗ the signal is present,
IF < s, h > < s∗ the signal is absent. (22)

The operator < s, h > is linear in s s; this means that the optimal detector
in presence of Gaussian noise is a detector which depends only on the
signal shape h and noise power spectral density S(ν).
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The Matched Filter Signal to Noise Ratio

The action of a linear filter for signals of known shape may be
characterized by the signal-to-noise ratio at the filter output.

ρ =
< h, h >2

< h, n >2
=< h, h >≡

∫ ∞

−∞
dν

h̃(ν)h̃∗(ν)

S(ν)
. (23)

The probability of false alarms and correct detection are determined by the
amount of s and the density of < s, h >. The amount of < s, h >, being
a linear combination of the variables Gaussian si is itself Gaussian
distributed. If we receive only noise, then

E [< n, h >] = 0 e E [< n, h >2] =< h, h > , (24)

where E [ ] is the expectation value. If we have s = h+ n, then

E [< s, h >] =< h, h > e E [< s, h >2] =< h, h > . (25)
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The Matched Filter Signal to Noise Ratio

Without any signal the probability density of < s, h > is

p0(< s, h >) =
1√

2π < h, h >
exp− < s, h >2

2 < h, h >
, (26)

while with signal is

ph(< s, h >) =
1√

2π < h, h >
exp−(< s, h > − < h, h >)2

2 < h, h >
. (27)

The False alarm probability F is equal to the probability that < s, h > is
greater than s∗ in presence of only noise:

F =

∫ ∞

s∗

p0(< s, h >)d < s, h >=
1√
2π

∫ ∞

ϕ∗

exp

{
−ϕ2

2
dϕ

}
, (28)

where ϕ∗ = s∗/ < h, h >.

Elena Cuoco (EGO, SNS) Signal Analysis Lectures April 13, 2020



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Matched Filter Signal to Noise Ratio

In a similar way, the probability of correct detection is

D =

∫ ∞

s∗

ph(< s, h >)d < s, h >=
1√
2π

∫ ∞

ϕ′
∗

exp

{
−ϕ2

2
dϕ

}
, (29)

where ϕ′
∗ = ϕ∗ −

√
< h, h >. If we fix F and D we can find which is the

minimum SNR ρ:

ρ =< h, h >= (ϕ∗ − ϕ′
∗)

2 per D ≥ F . (30)
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The Matched Filter Signal to Noise Ratio

The Matched or Wiener Filter

The matched or Wiener filter is given by

ρ =

∫ ∞

−∞
dν

s̃(ν)h̃∗(ν)

S(ν)
. (31)
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