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Stochastic process: time series time series

Stochastic process and Time Series.

A stochastic discrete process x[n] is a sequence of random variable for
each value of n. If n represents the time, we call it time series. A time
series is a sequence of data points measuring a physical quantity at
successive times spaced at uniform time intervals.

We say that x[n] is a stationary process, if its statistical description does
not depend on n.
That is the moments E(xk0 [n0], x

k1 [n1], ...x
kM [nM ]) do not depend on

the value of xM but only on the distance L between the value of x[n] and
x[n+ L].
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Stochastic process: time series time series

Gaussian process

We define a Gaussian stocastich process if {x[n0], x[n1] . . . x[nN−1]} has a
multivariate distribution. If we assume that the process is stationary and
with zero mean, the covariance matrix is the same to the correlation
matrix rxx

rxx =


rxx[0] rxx[−1] . . . rxx[−(N − 1)]
rxx[1] rxx[0] . . . rxx[−(N − 2)]
... ... . . . ...
rxx[N − 1] rxx[N − 2] . . . rxx[0]

 , (1)

where
rxx[k] = E{x∗[n]x[n+ k]} . (2)
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Stochastic process: time series time series

If samples are taken at a later time to generate the vector
x = (x[n0],x[n1] . . .x[nN−1])

T, we can write the density function of
probability of a Gaussian random process and real as

P [x] =
1

(2π)N/2|rxx|1/2
ex

Tr−1
xxx . (3)

Any linear operation that acts on a Gaussian stochastic process produces a
still gaussianly distributed process.
For a Gaussian stochastic process the statistics of the second order, i.e.
moment one and moment two, is a full description of the process. If we
then consider real gaussian stochastic stationary processes with zero mean
the correlation function provides all the information necessary to describe
the process.
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Stochastic process: time series time series

Autocorrelation function

The correlation function is connected to the power spectrum S(f) through
the Wiener–Khintchine theorem:

Sxx(f) =

k=∞∑
k=−∞

rxx[k] exp(−2iπfk) , (4)

where the spectrum power is defined as

Sxx(f) = lim
M→∞

E

 1

2M + 1

∣∣∣∣∣
M∑
−M

x[n] exp(−i2πfn)

∣∣∣∣∣
2
 . (5)

So a zero mean stationary gaussian stochastic process can be described
indifferently with the correlation function or with the spectral density.
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Stochastic process: time series time series

Many discrete stochastic processes are achieved as a result of a sampling
of a continuous stochastic process over time x(t), where in order to avoid
problems with aliasing1 we sample the continuous process x(t) with a
period Ts =

1

fs
, where fs is the maximum frequency present in the

spectrum of x(t).
The relationship between the continuous stochastic process x(t) and the
series stochastic sampled discreetly x[n] and given by the formula of
Shannon’s interpolation

x(t) =

∞∑
n=−∞

x[n]
sinπfs(t− nTs)

πfs(t− nTs)
, (6)

dove
x[n] = x(nTs) per −∞ < n < ∞ . (7)

1aliasing is a distortion that occurs in spectrum reconstruction that has not been
sampled at the maximum frequency present in the spectrum and therefore presents
spectral frequencies that do not belong to the original spectrum
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Stochastic process: time series time series

Power Spectral Density

If the process spectrum x(t) is limited bandwidth i.e. if S(f) = 0 for
|f | > fs

2
then the function of autocorrelation over time of the discrete

stochastic process is given by

rxx[n] = r(nTs) =

∫ fs/2

−fs/2
S(f)ei2πfTsndf . (8)

The discrete power spectrum is periodic

Sxx(f) = Sxx(f + kfs) k = 0,±1,±2, . . . (9)

and equal to the continuous power spectrum in the range of Nyquist

Sxx(f) = S(f)
−fs
2

≤ f
fs
2
, . (10)
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Stochastic process: time series time series

Stochastic process: time series
Not parametric modeling, Classical estimators
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Stochastic process: time series time series

Not parametric methods

We want to resolve now the issues related to the search for the process
x[n] if we know the power spectrum S(f) and vice versa the estimate of
S(f) if we know the process x[n], using not parametric methods. To this
end it is convenient to introduce the complex spectrum of the discrete
time series

S(z) = Ts

∞∑
n=−∞

rxx[n]z
−n . (11)

The one that we wrote in the transformed z of the autocorrelation
function rxx[n]. The transformed z is the equivalent of Laplace’s
transformation for discrete timing sequences, where z = e−i2πf .
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Stochastic process: time series time series

If we can write S(z) in the form

S(z) = Ts

∞∑
n=−∞

rxx[n]z
−n = TsH(z)H(1/z∗) , (12)

then we can generate the discrete time series x[n] filtering white noise as
follows

x[n] =

∞∑
m=0

h[m]w[n−m] , (13)

where h[m] is the filter impulse function (z):

h[m] =

∫ fs/2

−fs/2
H(f)ei2πfTsmdf (14)

and w[n] a gaussian white noise at zero mean and variance Ts

E{w[n]} = 0 E{w[n]w[n′]} = Tsδ[n− n′] . (15)
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Stochastic process: time series time series

Spectral Factorization

Let’s consider the problem of finding the H(z) filter that let us to simulate
the noise data x[n], starting with the knowledge of the spectrum S(z).
Assuming that the signal in input is a white noise at medium zero and
unitary variance, the H(z) transfer function must satisfy

S(z) = H(z)H(1/z∗) . (16)

The problem of the factoring of S(z) does not have a single solution
because if H(z) is a solution, then also

H′(z) = ±z−kH(z) (17)
H′′(z) = H(1/z∗) (18)

are solutions.
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Stochastic process: time series time series

It is possible to show that, apart from an ambiguity in the sign, we can
find a spectral factorization in which the filter H(z) and its inverse 1/H(z)
are causal and stable. For this to be possible, it is necessary that the S(f)
spectrum meets Paley-Wiener’s condition:∫ 1/2

−1/2
| lnS(f)|df < ∞ . (19)

This condition does not allow the spectrum S(f) to have extended regions
along the f axis where S(f) is zero. So when we perform filtering
operations on the spectrum we have to be careful we don’t send any part
of it to zero if we want to then build the causal and stable filter over time
that reproduces the spectrum.
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Stochastic process: time series time series

The Paley-Wiener condition is automatically satisfied if we do the spectral
factoring in the following way. Starting from the complex spectrum S(z)
we call cepstrum complex the quantity

Ŝ(z) = ln(S(z)) =
∞∑

n=−∞
r̂[n]z−n , (20)

where

r̂[n] =

∫ 1/2

−1/2
Ŝ(f)ei2πfndf =

∫ 1/2

−1/2
Ŝ(−f)ei2πfndf = r̂[−n] . (21)

Elena Cuoco (EGO, SNS) Signal Analysis Lectures May 12, 2020



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic process: time series time series

Introducing the causal part of Ŝ(z) defined as

Ŝ+(z) =
1

2
r̂[0] +

∞∑
n=1

r̂[n]z−n , (22)

we can write
Ŝ(z) = Ŝ+(z) + Ŝ+(1/z

∗) . (23)
Then the canonical factorization of S(z) is given by

H(z) = exp Ŝ+(z) , (24)

where H(z) has no zeros or poles outside the unitary circle in the complex
plan.
This ensures that the H(z) impulse response function both a stable and
causal filter and in the time domain given by

h[n] =

∫ 1/2

−1/2
H(f)ei2πfndf . (25)
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Stochastic process: time series The Periodiogram

The periodogram
When we have the discrete experimental data available in the domain of
time x[n] we want to estimate the power spectral density (PSD) of the
process.
A non-parametric estimate of the PSD is obtained through the
periodogram defined as

PPER =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n] exp(−i2πfn)

∣∣∣∣∣
2

. (26)

The periodogram satisfies
PPER(f) → P (f)

for a N number of data long enough (N → ∞), but its variance doesn’t
tend to zero for N → ∞; in particular the variance is constant regardless
of the value of N . So the periodogram is a flimsy estimation of the
spectrum of the process, being the standard deviation of the estimator
large as its mean.
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Stochastic process: time series The Periodiogram

In order to improve the quality of the statistics of the periodogram, we
introduce an averaged periodoram defined as

Paveraged =
1

K

K−1∑
m=0

P
(m)
PER(f) , (27)

where the periodogram is calculated on a data length L = N/K. In this
way the variance decreases by a factor 1/K. In this operation, however,
you pay the price of increasing the bias, since you use shorter data set. In
fact, it can be seen that the average value of the periodogram is given by

E{PPER} =

∫ 1/2

−1/2
WB(f − ν)P (ν)dν , (28)
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Stochastic process: time series The Periodiogram

where P is the PSD of the process and WB(f) is the Fourier transform of
Bartlett’s window

wB[k] =

 1− |k|
L

per |k| ≤ L− 1

0 per |k| > L
, (29)

that is
WB(f) =

1

L

(
sinπfL

sinπf

)
. (30)

A value of L shorter corresponds to a window of Bartlett narrower and
therefore at a main peak in WB(f) wider. So as the value of L decreases
the spectral resolution because we are not able to to resolve PSD details
smaller than 1/L. It is not possible therefore to have both a small variance
and a small bias; what we can get is only a compromise between the two
requests.
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